Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract High resolution cervical auscultation is a very promising noninvasive method for dysphagia screening and aspiration detection, as it does not involve the use of harmful ionizing radiation approaches. Automatic extraction of swallowing events in cervical auscultation is a key step for swallowing analysis to be clinically effective. Using time-varying spectral estimation of swallowing signals and deep feed forward neural networks, we propose an automatic segmentation algorithm for swallowing accelerometry and sounds that works directly on the raw swallowing signals in an online fashion. The algorithm was validated qualitatively and quantitatively using the swallowing data collected from 248 patients, yielding over 3000 swallows manually labeled by experienced speech language pathologists. With a detection accuracy that exceeded 95%, the algorithm has shown superior performance in comparison to the existing algorithms and demonstrated its generalizability when tested over 76 completely unseen swallows from a different population. The proposed method is not only of great importance to any subsequent swallowing signal analysis steps, but also provides an evidence that such signals can capture the physiological signature of the swallowing process.more » « less
-
null (Ed.)High-resolution cervical auscultation (HRCA) is an evolving clinical method for noninvasive screening of dysphagia that relies on data science, machine learning, and wearable sensors to investigate the characteristics of disordered swallowing function in people with dysphagia. HRCA has shown promising results in categorizing normal and disordered swallowing (i.e., screening) independent of human input, identifying a variety of swallowing physiological events as accurately as trained human judges. The system has been developed through a collaboration of data scientists, computer–electrical engineers, and speech-language pathologists. Its potential to automate dysphagia screening and contribute to evaluation lies in its noninvasive nature (wearable electronic sensors) and its growing ability to accurately replicate human judgments of swallowing data typically formed on the basis of videofluoroscopic imaging data. Potential contributions of HRCA when videofluoroscopic swallowing study may be unavailable, undesired, or not feasible for many patients in various settings are discussed, along with the development and capabilities of HRCA. The use of technological advances and wearable devices can extend the dysphagia clinician's reach and reinforce top-of-license practice for patients with swallowing disorders.more » « less
-
null (Ed.)Purpose Safe swallowing requires adequate protection of the airway to prevent swallowed materials from entering the trachea or lungs (i.e., aspiration). Laryngeal vestibule closure (LVC) is the first line of defense against swallowed materials entering the airway. Absent LVC or mistimed/shortened closure duration can lead to aspiration, adverse medical consequences, and even death. LVC mechanisms can be judged commonly through the videofluoroscopic swallowing study; however, this type of instrumentation exposes patients to radiation and is not available or acceptable to all patients. There is growing interest in noninvasive methods to assess/monitor swallow physiology. In this study, we hypothesized that our noninvasive sensor-based system, which has been shown to accurately track hyoid displacement and upper esophageal sphincter opening duration during swallowing, could predict laryngeal vestibule status, including the onset of LVC and the onset of laryngeal vestibule reopening, in real time and estimate the closure duration with a comparable degree of accuracy as trained human raters. Method The sensor-based system used in this study is high-resolution cervical auscultation (HRCA). Advanced machine learning techniques enable HRCA signal analysis through feature extraction and complex algorithms. A deep learning model was developed with a data set of 588 swallows from 120 patients with suspected dysphagia and further tested on 45 swallows from 16 healthy participants. Results The new technique achieved an overall mean accuracy of 74.90% and 75.48% for the two data sets, respectively, in distinguishing LVC status. Closure duration ratios between automated and gold-standard human judgment of LVC duration were 1.13 for the patient data set and 0.93 for the healthy participant data set. Conclusions This study found that HRCA signal analysis using advanced machine learning techniques can effectively predict laryngeal vestibule status (closure or opening) and further estimate LVC duration. HRCA is potentially a noninvasive tool to estimate LVC duration for diagnostic and biofeedback purposes without X-ray imaging.more » « less
An official website of the United States government
